domingo, 8 de julio de 2012

FISICA I : CINEMATICA (SUMARIO)





Cinemática

Commons-emblem-question book orange.svg
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas.
Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Cinemática}} ~~~~
La cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento (cambios de posición) de los cuerpos, sin tomar en cuenta las causas que lo producen, limitándose esencialmente, al estudio de la trayectoria en función del tiempo. La aceleración es el ritmo con que cambia su rapidez (módulo de la velocidad). La rapidez y la aceleración son las dos principales cantidades que describen cómo cambia su posición en función del tiempo.

Contenido

  [ocultar
·                                 1 Historia
·                                 2 Elementos básicos de la cinemática
·                                 3 Fundamento de la cinemática clásica
·                                 4 Sistemas de coordenadas
·                                 5 Registro del movimiento
·                                 6 Movimiento rectilíneo
o                                        6.1 Movimiento rectilíneo uniforme
o                                        6.2 Movimiento rectilíneo uniformemente acelerado
o                                        6.3 Movimiento armónico simple
·                                 7 Movimiento parabólico
o                                        7.1 Movimiento circular uniforme
o                                        7.2 Movimiento circular uniformemente acelerado
·                                 8 Formulación matemática con el cálculo diferencial
·                                 9 Movimiento sobre la Tierra
·                                 10 Cinemática relativista
·                                 11 Véase también
·                                 12 Referencias
·                                 13 Bibliografía
·                                 14 Enlaces externos

[editar]Historia

Hacia 1605, Galileo Galilei hizo sus famosos estudios del movimiento de caída libre y de esféras en planos inclinados a fin de comprender aspectos del movimiento relevantes en su tiempo, como el movimiento de los planetas y de las balas de cañón.1Posteriormente, el estudio de la cicloide realizado por Evangelista Torricelli (1608-1647) fue configurando lo que se conocería comogeometría del movimiento.
El nacimiento de la cinemática moderna tiene lugar con la alocución de Pierre Varignon el 20 de enero de 1700 ante la Academia Real de las Ciencias de París.2 Fue allí cuando definió la noción de aceleración y mostró cómo es posible deducirla de la velocidad instantánea con la ayuda de un simple procedimiento de cálculo diferencia.
En la segunda mitad del siglo XVIII se produjeron más contribuciones por Jean Le Rond d'Alembert, Leonhard Euler y André-Marie Ampère y continuaron con el enunciado de la ley fundamental del centro instantáneo de rotación en el movimiento plano, de Daniel Bernoulli (1700-1782).
El vocablo cinemática fue creado por André-Marie Ampère (1775-1836), quien delimitó el contenido de esta disciplina y aclaró su posición dentro del campo de la mecánica. Desde entonces y hasta nuestros días la cinemática ha continuado su desarrollo hasta adquirir una estructura propia.
Con la teoría de la relatividad especial de Albert Einstein en 1905 se inició una nueva etapa, la cinemática relativista, donde el tiempo y el espacio no son absolutos, y sí lo es la velocidad de la luz.

[editar]Elementos básicos de la cinemática

Los elementos básicos de la cinemática son: espacio, tiempo y móvil.
En la mecánica clásica se admite la existencia de un espacio absoluto, es decir, un espacio anterior a todos los objetos materiales e independiente de la existencia de estos. Este espacio es el escenario donde ocurren todos los fenómenos físicos, y se supone que todas las leyes de la física se cumplen rigurosamente en todas las regiones del mismo. El espacio físico se representa en la mecánica clásica mediante un espacio puntual euclídeo.
Análogamente, la mecánica clásica admite la existencia de un tiempo absoluto que transcurre del mismo modo en todas las regiones del Universo y que es independiente de la existencia de los objetos materiales y de la ocurrencia de los fenómenos físicos.
El móvil más simple que se puede considerar es el punto material o partícula; cuando en la cinemática se estudia este caso particular de móvil, se denomina cinemática de la partícula, y cuando el móvil bajo estudio es un cuerpo rígido se lo puede considerar un sistemade partículas y hacer extensivos análogos conceptos; en este caso se le denomina cinemática del sólido rígido o del cuerpo rígido.

[editar]Fundamento de la cinemática clásica

La cinemática trata del estudio del movimiento de los cuerpos en general y, en particular, el caso simplificado del movimiento de unpunto material. Para sistemas de muchas partículas, tales como los fluidos, las leyes de movimiento se estudian en la mecánica de fluidos.
El movimiento trazado por una partícula lo mide un observador respecto a un sistema de referencia. Desde el punto de vista matemático, la cinemática expresa cómo varían las coordenadas de posición de la partícula (o partículas) en función del tiempo. Lafunción matemática que describe la trayectoria recorrida por el cuerpo (o partícula) depende de la velocidad (la rapidez con la que cambia de posición un móvil) y de la aceleración (variación de la velocidad respecto del tiempo).
El movimiento de una partícula (o cuerpo rígido) se puede describir según los valores de velocidad y aceleración, que son magnitudesvectoriales.
§                    Si la aceleración es nula, da lugar a un movimiento rectilíneo uniforme y la velocidad permanece constante a lo largo del tiempo.
§                    Si la aceleración es constante con igual dirección que la velocidad, da lugar al movimiento rectilíneo uniformemente acelerado y la velocidad variará a lo largo del tiempo.
§                    Si la aceleración es constante con dirección perpendicular a la velocidad, da lugar al movimiento circular uniforme, donde el módulo de la velocidad es constante, cambiando su dirección con el tiempo.
§                    Cuando la aceleración es constante y está en el mismo plano que la velocidad y la trayectoria, tiene lugar el movimiento parabólico, donde la componente de la velocidad en la dirección de la aceleración se comporta como un movimiento rectilíneo uniformemente acelerado, y la componente perpendicular se comporta como un movimiento rectilíneo uniforme, y se genera una trayectoria parabólica al componer ambas.
§                    Cuando la aceleración es constante pero no está en el mismo plano que la velocidad y la trayectoria, se observa el efecto de Coriolis.
§                    En el movimiento armónico simple se tiene un movimiento periódico de vaivén, como el del péndulo, en el cual un cuerpo oscila a un lado y a otro desde la posición de equilibrio en una dirección determinada y en intervalos iguales de tiempo. La aceleración y la velocidad son funciones, en este caso, sinusoidales del tiempo.
§                    En el cuerpo de una mega estrella se puede describir segun los valores de velocidad luz entre otros
Al considerar el movimiento de traslación de un cuerpo extenso, en el caso de ser rígido, conociendo como se mueve una de las partículas, se deduce como se mueven las demás. Así, basta describir el movimiento de una partícula puntual, como por ejemplo elcentro de masa del cuerpo, para especificar el movimiento de todo el cuerpo. En la descripción del movimiento de rotación hay que considerar el eje de rotación respecto del cual rota el cuerpo y la distribución de partículas respecto al eje de giro. El estudio delmovimiento de rotación de un sólido rígido suele incluirse en la temática de la mecánica del sólido rígido, por ser más complicado. Un movimiento interesante es el de una peonza, que al girar puede tener un movimiento de precesión y de nutación.
Cuando un cuerpo posee varios movimientos simultáneamente, como por ejemplo uno de traslación y otro de rotación, se puede estudiar cada uno por separado en el sistema de referencia que sea apropiado para cada uno, y luego, superponer los movimientos.

[editar]Sistemas de coordenadas

Artículo principal: Sistema de coordenadas.
En el estudio del movimiento, los sistemas de coordenadas más útiles se encuentran viendo los límites de la trayectoria a recorrer o analizando el efecto geométrico de la aceleración que afecta al movimiento. Así, para describir el movimiento de un talón obligado a desplazarse a lo largo de un aro circular, la coordenada más útil sería el ángulo trazado sobre el aro. Del mismo modo, para describir el movimiento de una partícula sometida a la acción de una fuerza central, las coordenadas polares serían las más útiles.
En la gran mayoría de los casos, el estudio cinemático se hace sobre un sistema de coordenadas cartesianas, usando una, dos o tres dimensiones, según la trayectoria seguida por el cuerpo.

[editar]Registro del movimiento

La tecnología hoy en día nos ofrece muchas formas de registrar el movimiento efectuado por un cuerpo. Así, para medir la velocidad se dispone del radar de tráfico cuyo funcionamiento se basa en el efecto Doppler. El taquímetro es un indicador de la velocidad de un vehículo basado en la frecuencia de rotación de las ruedas. Los caminantes disponen de podómetros que detectan las vibraciones características del paso y, suponiendo una distancia media característica para cada paso, permiten calcular la distancia recorrida. El vídeo, unido al análisis informático de las imágenes, permite igualmente determinar la posición y la velocidad de los vehículos.

[editar]Movimiento rectilíneo

Artículo principal: Movimiento rectilíneo.
Es aquél en el que el móvil describe una trayectoria en línea recta.

[editar]Movimiento rectilíneo uniforme

Artículo principal: Movimiento obtilinea en la grafica.
Figura 1. Variación en el tiempo de la posición y la velocidad para un movimiento rectilíneo uniforme.
Para este caso, la velocidad del vector se mueve hacia la dirección fornica del lado obstante por lo tanto esto puede decirse que la velocidad se vuelve en cero por lo que la velocidad permanece constante a lo largo del tiempo. Esto corresponde al movimiento de un objeto lanzado en el espacio fuera de toda interacción, o al movimiento de un objeto que se desliza sin fricción. Siendo la velocidad v constante, la posición variará linealmente respecto del tiempo, según la ecuación:
v = v_0 = \text{const.} \,
x = v_0 \, t + x_0
donde \ x_0 es la posición inicial del móvil respecto al centro de coordenadas, es decir para \ t=0.
Si \ x_0=0 la ecuación anterior corresponde a una recta que pasa por el origen, en una representación gráfica de la función \ x(t), tal como la mostrada en la figura 1.

[editar]Movimiento rectilíneo uniformemente acelerado

Figura 2. Variación en el tiempo de la posición, la velocidad y la aceleración en un movimiento rectilíneo uniformemente acelerado.
En éste movimiento la aceleración es constante, por lo que la velocidad de móvil varíalinealmente y la posición cuadráticamente con tiempo. Las ecuaciones que rigen este movimiento son las siguientes:
a = a_0 = \text{const.} \,
v = v_0 + at \,
x = x_0 + v_0 t + \frac{1}{2}at^2
v^2 = v_0^2 + 2a(x_f-x_0) \,
Donde \ x_0  es la posición inicial del móvil, \ x_f  es la posición final y \ v_0  su velocidad inicial, aquella que tiene para \ t = 0 .
Obsérvese que si la aceleración fuese nula, las ecuaciones anteriores corresponderían a las de un movimiento rectilíneo uniforme, es decir, con velocidad \ v=v_0  constante.
Dos casos específicos de MRUA son la caída libre y el tiro vertical. La caída libre es el movimiento de un objeto que cae en dirección al centro de la Tierra con una aceleración equivalente a la aceleración de la gravedad (que en el caso del planeta Tierra al nivel del mar es de aproximadamente 9,8 m/s2). El tiro vertical, en cambio, corresponde al de un objeto arrojado en la dirección opuesta al centro de la tierra, ganando altura. En este caso la aceleración de la gravedad, provoca que el objeto vaya perdiendo velocidad, en lugar de ganarla, hasta llegar al estado de reposo; seguidamente, y a partir de allí, comienza un movimiento de caída libre con velocidad inicial nula.

No hay comentarios: