domingo, 8 de julio de 2012

FISICA I : VECTORES




Vector

Para otros usos de este término, véase Vector (desambiguación).
Este artículo trata sobre el concepto físico de vector. Para el tratamiento matemático formal, véase Espacio vectorial.
En física, un vector (también llamado vector euclidiano o vector geométrico) es una herramienta geométrica utilizada para representar una magnitud física definida por su módulo (o longitud), su dirección (u orientación) y su sentido (que distingue el origen del extremo).12 3
En matemáticas se define un vector como un elemento de un espacio vectorial, esta noción es más abstracta y para mucho espacios vectoriales no es posible representar a sus vectores mediante un módulo o longitud y una orientación (ver Espacio vectorial).
Los vectores en un espacio euclídeo se pueden representar geométricamente como segmentos de recta dirigidos («flechas») en el plano \R^2 o en el espacio \R^3.
Son ejemplos de magnitudes vectoriales: la velocidad con que se desplaza un móvil, ya que no queda definida tan sólo por su módulo (lo que marca el velocímetro, en el caso de un automóvil), sino que se requiere indicar la dirección y el sentido (hacia donde se dirige); la fuerza que actúa sobre un objeto, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que actúa; también, el desplazamiento de un objeto.
Un vector queda definido por su módulo, dirección y sentido: desde A hasta B.

Contenido

  [ocultar
·                                 1 Conceptos fundamentales
o                                        1.1 Definición
o                                        1.2 Magnitudes escalares y vectoriales
o                                        1.3 Notación
o                                        1.4 Clasificación de vectores
o                                        1.5 Componentes de un vector
o                                        1.6 Representación gráfica de los vectores
·                                 2 Operaciones con vectores
o                                        2.1 Suma de vectores
§                                                 2.1.1 Método del paralelogramo
§                                                 2.1.2 Método del triángulo o método poligonal
§                                                 2.1.3 Método analítico para la suma y diferencia de vectores
o                                        2.2 Producto de un vector por un escalar
o                                        2.3 Producto escalar
o                                        2.4 Producto vectorial
o                                        2.5 Derivada ordinaria de un vector
o                                        2.6 Derivada covariante de un vector
o                                        2.7 Ángulo entre dos vectores
o                                        2.8 Descomposiciones de un vector
·                                 3 Cambio de base vectorial
·                                 4 Requerimientos físicos de las magnitudes vectoriales
·                                 5 Véase también
·                                 6 Referencias
·                                 7 Bibliografía
·                                 8 Enlaces externos

[editar]Conceptos fundamentales

Esta sección explica los aspectos básicos, la necesidad de los vectores para representar ciertas magnitudes físicas, los componentes de un vector, la notación de los mismos, etc.

[editar]Definición

Componentes de un vector.
Se llama vector de dimensión n \, a una tupla de n \, números reales (que se llaman componentes del vector). El conjunto de todos los vectores de dimensión n \, se representa como \mathbb{R}^n (formado mediante el producto cartesiano).
Así, un vector \scriptstyle v perteneciente a un espacio \mathbb{R}^n se representa como:
(left)v = (a_1, a_2, a_3, \dots, a_n), donde v \in \mathbb{R}^n
Un vector también se puede ver desde el punto de vista de la geometría como vector geométrico (usando frecuentemente el espacio tridimensional \mathbb{R}^3 ó bidimensional \mathbb{R}^2).
Un vector fijo del plano es un segmento orientado, en el que hay que distinguir tres características:1 2 3
§                    módulo: la longitud del segmento
§                    dirección: la orientación de la recta
§                    sentido: indica cual es el origen y cual es el extremo final de la recta
En inglés, la palabra "direction" indica tanto la dirección como el sentido del vector, con lo que se define el vector con solo dos características: módulo y dirección.4
Los vectores fijos del plano se denotan con dos letras mayúsculas, por ejemplo AB, que indican su origen y extremo respectivamente.
\overrightarrow{AB} = (x_B - x_A, y_B - y_A) \,

[editar]Magnitudes escalares y vectoriales

Representación gráfica de una magnitud vectorial, con indicación de su punto de aplicación y de los versores cartesianos.
Representación de los vectores.
Frente a aquellas magnitudes físicas, tales como la masa, la presión, el volumen, laenergía, la temperatura, etc; que quedan completamente definidas por un número y las unidades utilizadas en su medida, aparecen otras, tales como el desplazamiento, lavelocidad, la aceleración, la fuerza, el campo eléctrico, etc., que no quedan completamente definidas dando un dato numérico, sino que llevan asociadas una dirección. Estas últimas magnitudes son llamadas vectoriales en contraposición a las primeras llamadas escalares.
Las magnitudes escalares quedan representadas por el ente matemático más simple; por un número. Las magnitudes vectoriales quedan representadas por un ente matemático que recibe el nombre de vector. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa por un segmento orientado. Así, un vector queda caracterizado por los siguientes elementos: su longitud o módulo, siempre positivo por definición, y su dirección, la cual puede ser representada mediante la suma de sus componentes vectoriales ortogonales, paralelas a los ejes de coordenadas; o mediante coordenadas polares, que determinan el ángulo que forma el vector con los ejes positivos de coordenadas.5 6
Se representa como un segmento orientado, con una dirección, dibujado de forma similar a una "flecha". Su longitud representa el módulo del vector, la recta indica la dirección, y la "punta de flecha" indica su sentido.1 2 3

[editar]Notación

Commons-emblem-question book orange.svg
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas.
Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Vector}} ~~~~
Las magnitudes vectoriales se representan en los textos impresos por letras ennegrita, para diferenciarlas de las magnitudes escalares que se representan encursiva. En los textos manuscritos, las magnitudes vectoriales se representan colocando una flecha sobre la letra que designa su módulo (el cual es un escalar).
Ejemplos
§                    \mathbf A, \ \mathbf a,\ \boldsymbol{\omega}, ... representan, respectivamente, las magnitudes vectoriales de módulos A, a, ω, ... El módulo de una magnitud vectorial también se representa encerrando entre barras la notación correspondiente al vector: |\mathbf A|, \ |\mathbf a\,\ |\boldsymbol{\omega}|, ...
§                    En los textos manuscritos se escribe: \vec A, \ \vec a,\ \vec{\omega},... para los vectores y |\vec A|, \ |\vec a|,\ |\vec {\omega}|,... o A, \ a,\ {\omega},... para los módulos.
Cuando convenga, se representan la magnitud vectorial haciendo referencia al origen y al extremo del segmento orientado que la representa geométricamente; así, se designan los vectores representados en la Figura 2 en la forma  \mathbf A = \overrightarrow{MN}, \mathbf B = \overrightarrow{OP} \,, ... resultando muy útil esta notación para los vectores que representan el desplazamiento.
Además de estas convenciones los vectores unitarios o versores, cuyo módulo es la unidad, se representan frecuentemente con un circunflejo encima, por ejemplo \mathbf{\hat{u}}, \mathbf{\hat{v}}.

[editar]Clasificación de vectores

Según los criterios que se utilicen para determinar la igualdad o equipolencia de dos vectores, pueden distinguirse distintos tipos de los mismos:
§                    Vectores libres: no están aplicados en ningún punto en particular.
§                    Vectores deslizantes: su punto de aplicación puede deslizar a lo largo de su recta de acción.
§                    Vectores fijos o ligados: están aplicados en un punto en particular.
Podemos referirnos también a:
§                    Vectores unitarios: vectores de módulo unidad.
§                    Vectores concurrentes o angulares: son aquellas cuyas direcciones o líneas de acción pasan por un mismo punto. También se les suele llamar angulares por que forman un ángulo entre ellas.
§                    Vectores opuestos: vectores de igual magnitud y dirección, pero sentidos contrarios.1 En inglés se dice que son de igual magnitud pero direcciones contrarias, ya que la dirección también indica el sentido.
§                    Vectores colineales: los vectores que comparten una misma recta de acción.
§                    vectores paralelos: si sobre un cuerpo rígido actúan dos o más fuerzas cuyas líneas de acción son paralelas.
§                    Vectores coplanarios: los vectores cuyas rectas de acción son coplanarias (situadas en un mismo plano).

[editar]Componentes de un vector

Componentes del vector.
Un vector en el espacio se puede expresar como una combinación lineal de tresvectores unitarios o versores perpendiculares entre sí que constituyen una base vectorial.
En coordenadas cartesianas, los vectores unitarios se representan por  \mathbf{i} \,,  \mathbf{j} ,  \mathbf{k} , paralelos a los ejes de coordenadas x, y, z positivos. Las componentes del vector en una base vectorial predeterminada pueden escribirse entre paréntesis y separadas con comas:
 \mathbf{a} = (a_x,a_y,a_z)
o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será
\mathbf{a} = a_x \, \mathbf{i}+ a_y \, \mathbf{j} + a_z \, \mathbf{k}
Estas representaciones son equivalentes entre sí, y los valores ax, ay, az, son las componentes de un vector que, salvo que se indique lo contrario, son números reales.
Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:
\mathbf{a} = \begin{bmatrix}
 a_x\\
 a_y\\
 a_z\\
\end{bmatrix}
\qquad 
\mathbf{a} = [ a_x\ a_y\ a_z ]
Con esta notación, los vectores cartesianos quedan expresados en la forma:
{\mathbf i} = [1\ 0\ 0],\ {\mathbf j} = [0\ 1\ 0],\ {\mathbf k} = [0\ 0\ 1]

[editar]Representación gráfica de los vectores

Aunque hay quien no recomienda el uso de gráficos para evitar la confusión de conceptos y la inducción al error, sin investigación que lo corrobore, también es cierto que la memoria se estimula con mejores resultados. Para ello veamos las notas:
§                    Llamaremos vector a la representación visual con el símbolo de flecha( un segmento y un triángulo en un extremo).
§                    La rectitud visual de una flecha o curvatura de la misma, no la hace diferente en símbolo si los dos extremos permanecen en el mismo lugar y orden.
§                    El que una flecha cierre en sí misma, indica la ausencia de efectos algebraicos.
§                    Para visualizar la suma de vectores se hará encadenándolos, es decir, uniendo el extremo que tiene un triángulo(final) del primer vector con el extremo que no lo tiene(origen) del segundo vector manteniendo la dirección y distancia, propias al espacio, de sus dos extremos, ya que estas dos cualidades los distingue visualmente de otros vectores.
Examinemos cada uno de los casos que aparecen en la definición:
La definición suma de vectores en el orden u+v produce otro vector, es como encadenar, siempre visualmente, un vector u y luego uno v. Diremos que u+v se simplifica como un vector w o que w descompone como suma de vectores u y v.
Vetorial space P.GIF
1) Decir que u+v=v+u, es exigir que las dos sumas simplifiquen en el mismo vector, en negro. Véase que en física los vectores en rojo simulan la descomposición de fuerzas ejercidas por el vector negro en su origen, y se representa con un paralelogramo.
Vectorial space P 1.GIF
2) Decir que u+(v+w)=(u+v)+w, es exigir que las simplificaciones de sumas de vectores puedan ser optativas en cualquier cadena de sumas.
Vectorial space P 2.GIF
3) Decir que existe un vector 0 tal que u+0=u, equivale a exigir que exista un vector incapaz de efectuar, mediante la suma, modificación alguna a todos los vectores.
Vectorial space P 3.GIF
4) Decir que u+(-u)=0, es exigir la existencia de un elemento, -u, que sumado a u simplifique en un vector cero.
Vectorial space P 4.GIF
La definición producto por escalar a \cdot u produce otro vector; es como modificar el extremo final del vector u, siempre visualmente.
§         Los escalares se representarán con una línea de trazos a modo, exclusivamente, de distinción ya que no siempre pertenecen al espacio de vectores.
Por un lado la representación del producto en el caso K = \mathbb{R} modifica, visualmente, la longitud de la imagen del vector, quedando ambos siempre superpuestos; por otro lado las representaciones en el caso K = \mathbb{C} además de modificar la longitud, también agrega rotaciones, para facilitarlas visualmente considérense centradas en el origen del vector, siendo estas modificaciones un poco más expresivas, visualmente, pero no más fáciles que en el caso real:
Vectorial space P e.GIF
a)Decir que a(bu)=(ab)u, es exigir que los productos encadenados a(b(u)) pueden simplificarse como uno, c=ab, luego (ab)u queda como cu.
Vectorial space P a.GIF
b) Decir que existe el escalar 1 tal que 1u=u, equivale a decir exista un escalar incapaz de efectuar, mediante producto, modificación alguna a todos los vectores.
Vectorial space P b.GIF
c) Decir que a(u+v)=au+av, es exigir la propiedad distributiva respecto la suma vectorial.
Vectorial space P c.GIF
d) Decir que (a+b)u=au+bu, es exigir la propiedad distributiva respecto la suma escalar.
Vectorial space P d.GIF
Para el caso real se han de eliminar las rotaciones de los ejemplos anteriores.

[editar]Operaciones con vectores

[editar]Suma de vectores

Para sumar dos vectores libres (vector y vector) se escogen como representantes dos vectores tales que el extremo final de uno coincida con el extremo origen del otro vector.

[editar]Método del paralelogramo

Método del paralelogramo.
Este método permite solamente sumar vectores de dos en dos. Consiste en disponer gráficamente los dos vectores de manera que los orígenes de ambos coincidan en un punto, trazando rectas paralelas a cada uno de los vectores, en el extremo del otro y de igual longitud, formando así un paralelogramo (ver gráfico). El vector resultado de la suma es la diagonal de dicho paralelogramo que parte del origen común de ambos vectores.

[editar]Método del triángulo o método poligonal

Método del triángulo.
Consiste en disponer gráficamente un vector a continuación de otro, ordenadamente: el origen de cada uno de los vectores coincidirá con el extremo del siguiente. El vector resultante es aquel cuyo origen coincide con el del primer vector y termina en el extremo del último

No hay comentarios: